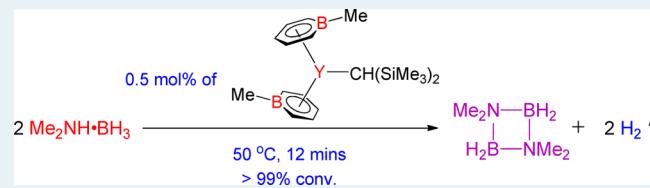


1-Methyl Boratabenzene Yttrium Alkyl: A Highly Active Catalyst for Dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$


Erli Lu, Yuanyuan Yuan, Yaofeng Chen,* and Wei Xia

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China

 Supporting Information

ABSTRACT: Catalytic activity of rare-earth metal complexes for dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ is deeply ligand- and metal ion-dependent, and 1-methyl boratabenzene yttrium alkyl shows very high activity for the reaction (TOF > 1000 h^{-1}). The transformation of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ into $[\text{Me}_2\text{N}-\text{BH}_2]_2$ proceeds through an intermediate $\text{Me}_2\text{NH}-\text{BH}_2-\text{NMe}_2-\text{BH}_3$.

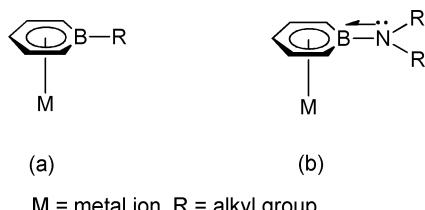
KEYWORDS: *N,N-dimethylamine borane, dehydrocoupling, boratabenzene, rare-earth metal*

INTRODUCTION

The catalyzed dehydrocoupling of amine boranes has attracted great interest recently because of the potential usage of amine boranes as H_2 storage materials in future clean energy applications.¹ An increasing number of transition metal and main group metal-based complexes have been investigated as catalysts for dehydrocoupling of amine boranes.^{1,2} On the other hand, rare-earth metal complexes have been widely utilized as catalysts for organic synthesis and polymer synthesis in the last two decades;³ however, their application in dehydrocoupling of amine boranes has been far less explored. Only two rare-earth metal amides, $\text{Sc}[\text{N}(\text{SiHMe}_2)_2]_3(\text{thf})_2$ and $\text{Y}[\text{N}(\text{SiMe}_3)_2]_3$, have been used for dehydrocoupling of dimethylamine borane ($\text{Me}_2\text{NH}\cdot\text{BH}_3$). TOFs for the Sc and Y complexes are 33.3 and 2.8 h^{-1} , respectively.⁴

Boratabenzene is a heterocyclic, 6π -electron aromatic anion that has been introduced into organometallic chemistry as an isoelectronic analogue of the well-known cyclopentadienide anion (Cp^-).⁵ One distinguishing feature of boratabenzene metal complexes is the existence of an electron-deficient boron atom on the aromatic ligand, and the electron deficiency of the boron atom can be tuned by its substituent (Chart 1).⁶ Recently, we synthesized a variety of boratabenzene rare-earth metal complexes.⁷ We present here our initial study on the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ (Scheme 1) catalyzed by rare-

Scheme 1. Dehydrocoupling of Dimethylamine Borane



earth metal alkyls with 1-methyl boratabenzene and 1-diethylamino boratabenzene ligands. In the former, the boron atom on boratabenzene is significantly electron-deficient, whereas the latter has a less electron-deficient boron atom as a result of a B–N π interaction.^{7e} The study shows that the substituent on boron has great influence on the catalytic activity of complexes, and (1-methyl boratabenzene) yttrium alkyl is a highly active catalyst for the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$. The dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ catalyzed by some other rare-earth metal complexes has also been investigated.

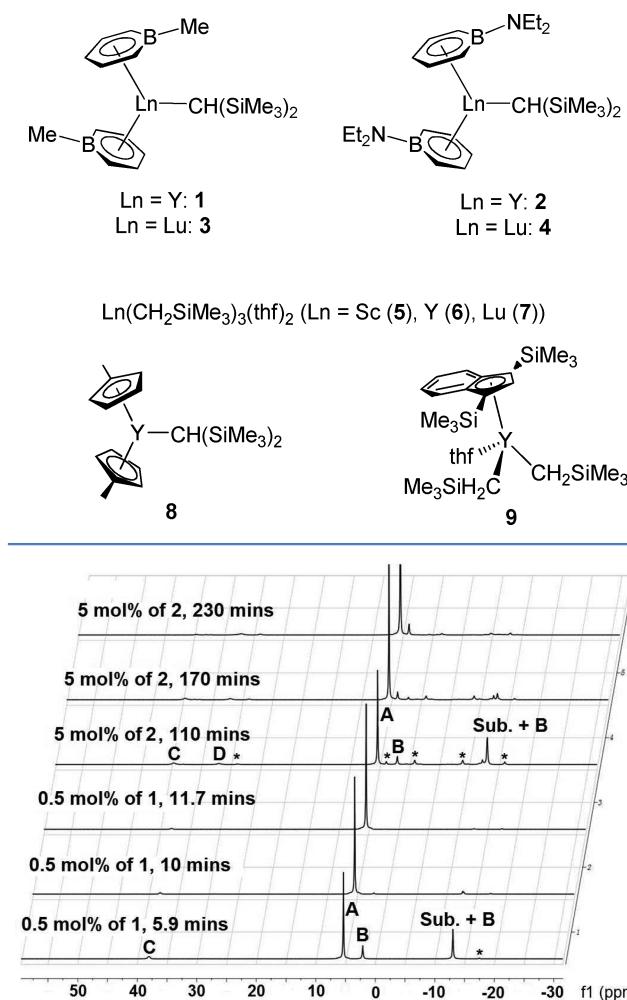
RESULTS AND DISCUSSION

Boratabenzene yttrium alkyls ($\text{C}_5\text{H}_5\text{BMe}_2\text{YCH}(\text{SiMe}_3)_2$ (1) and $(\text{C}_5\text{H}_5\text{BNMe}_2)_2\text{YCH}(\text{SiMe}_3)_2$ (2) (Chart 2) were synthesized as we previously reported.^{7e} The dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ catalyzed by 1 and 2 was carried out in C_6D_6 at 50 °C, and the reactions were monitored by $^{11}\text{B}\{^1\text{H}\}$ NMR spectroscopy. The complex 1 shows very high activity for the selective dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ into cyclic dimer $[\text{Me}_2\text{N}-\text{BH}_2]_2$ (A). Even with a very small amount of 1 (0.5 mol % catalyst loading), >99% conversion of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ was achieved within 12 min (Figure 1 and Table 1). About 98% of the product was $[\text{Me}_2\text{N}-\text{BH}_2]_2$ (A); the remainder was $\text{Me}_2\text{N}=\text{BH}_2$ (C). Complex 1 has a TOF up to 1000 h^{-1} , and to the best of our knowledge, it is the most active early transition metal catalyst for the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$. The 1-amino-substituted boratabenzene complex

Chart 1. Boratabenzene Metal Complexes

(a)

(b)


M = metal ion, R = alkyl group

Received: January 9, 2013

Revised: February 14, 2013

Published: February 14, 2013

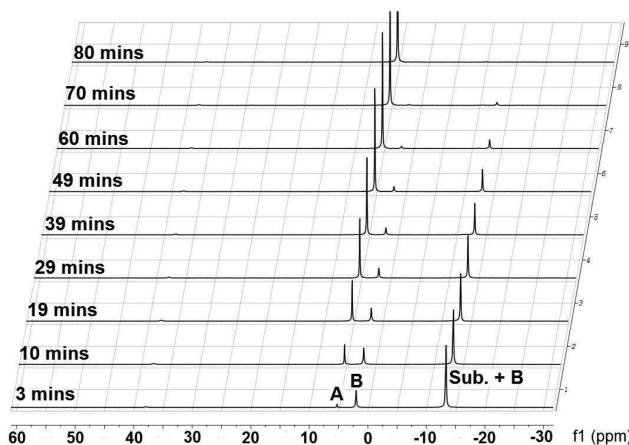
Chart 2. Rare-Earth Metal complexes 1–9

Figure 1. $^{11}\text{B}\{^1\text{H}\}$ NMR spectra showing the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ (sub.) catalyzed by **1** and **2**. Conditions: $[\text{sub.}]_0 = 0.68 \text{ mol/L}$, C_6D_6 as the solvent, 50°C . A, $[\text{Me}_2\text{N}\cdot\text{BH}_2]_2$; B, $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$; C, $\text{Me}_2\text{N}=\text{BH}_2$; D, $(\text{Me}_2\text{N})_2\text{BH}$; *, other boron-containing species.

Table 1. The Dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ Catalyzed by the Rare-Earth Metal Complexes 1–9^a

complex	cat. (mol %)	time (min)	conv. of sub. (%)	A ^b (%)	TOF (h ⁻¹)
1	0.5	11.7	>99	98	1015
2	5	110	86	55	9.4
3	1	28.5	>99	98	208
4	5	100	91	72	11
5	5	150	96	84	7.7
6	5	255	38	24	1.8
7	5	240	73	60	3.7
8	1	80	>99	98	74
9	5	240	46	31	2.3

^aConditions: $[\text{sub.}]_0 = 0.68 \text{ mol/L}$, C_6D_6 as the solvent, 50°C . ^bA: $[\text{Me}_2\text{N}\cdot\text{BH}_2]_2$; the values are the percentages of boron-containing A's in the total product's boron content by $^{11}\text{B}\{^1\text{H}\}$ NMR spectra; the remaining products are the linear dimer $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$ (B), $\text{Me}_2\text{N}=\text{BH}_2$ (C), $(\text{Me}_2\text{N})_2\text{BH}$ (D), and some other unidentified species.


2 is far less active for the reaction than **1**. For example, to obtain 86% conversion of the substrate, a larger catalyst loading (5 mol % of **2**) and longer reaction time (110 min) were needed (Figure 1 and Table 1).

To examine if other boratabenzene rare-earth metal complexes have the same substituent effect, boratabenzene lutetium alkyls $(\text{C}_5\text{H}_5\text{BMe})_2\text{LuCH}(\text{SiMe}_3)_2$ (**3**) and $(\text{C}_5\text{H}_5\text{BNEt}_2)_2\text{LuCH}(\text{SiMe}_3)_2$ (**4**)^{7e} were prepared and used for the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$. As for the yttrium ones, it was observed that 1-methyl-substituted lutetium complex **3** is much more active than its 1-amino-substituted congener **4**. For the reaction catalyzed by **3**, >99% conversion of the substrate was achieved within 29 min with 1 mol % catalyst loading, and 98% of the products is $[\text{Me}_2\text{N}\cdot\text{BH}_2]_2$ (A). The complexes with 1-methyl-substituted boratabenzene ligand (**1** and **3**) show higher activity than their 1-amino-substituted congeners (**2** and **4**). This is possibly due to the more electron-deficient rare-earth metal centers in **1** and **3**, as 1-methyl boratabenzene is a poorer electronic donor in comparison with 1-diethylamino boratabenzene. Another possible factor is the H···B interaction. The hydric Hs on boron in $\text{Me}_2\text{NH}\cdot\text{BH}_3$, or the reaction intermediates may interact with electron-deficient boron atom in 1-methyl boratabenzene to accelerate the reaction.

The $^{11}\text{B}\{^1\text{H}\}$ NMR spectroscopy monitoring of the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ catalyzed by **1** and **3** indicated some significant differences from those catalyzed by the magnesium complexes (Mg^nBu_2 and $\text{Mg}\{\text{CH}(\text{SiMe}_3)_2\}_2(\text{thf})_2$).⁸ In the reactions catalyzed by **1** and **3**, metal species containing $[\text{Me}_2\text{N}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3]^-$ anion were not observed, and the amount of $\text{HB}(\text{NMe}_2)_2$ are traces (<0.5 mol %). On the other hand, a significant amount of linear dimer $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$ (B) was detected. For example, in the reaction catalyzed by 1 mol % of **3**, ~34 mol % of the boron-containing species is $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$ at 4.4 min after the reaction is initiated (see Figure S1 in the Supporting Information). With the progress of the reaction, $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$ was gradually converted into the final product $[\text{Me}_2\text{N}\cdot\text{BH}_2]_2$.

To have a better understanding on the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ catalyzed by rare-earth metal complexes, some other rare-earth metal complexes, (e.g. rare-earth metal trialkyls $\text{Ln}(\text{CH}_2\text{SiMe}_3)_3(\text{thf})_2$ ($\text{Ln} = \text{Sc}$ (**5**), Y (**6**), Lu (**7**)),⁹ bis(cyclopentadienyl) yttrium alkyl $(\text{C}_5\text{H}_4\text{Me})_2\text{YCH}(\text{SiMe}_3)_2$ (**8**),¹⁰ and mono(indenyl)yttrium dialkyl $(1,3\text{-(SiMe}_3)_2\text{C}_9\text{H}_5)\text{Y}(\text{CH}_2\text{SiMe}_3)_2(\text{thf})$ (**9**))¹¹) were synthesized and tested for the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$. The results are summarized in Table 1. These complexes are all capable of catalyzing the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$, and the TOFs ranged from 1.8 to 74 h⁻¹. The catalytic activity is greatly influenced by the ligand and metal ion, and complex **8** shows the highest activity. It is noteworthy that $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$ (B) acts as an intermediate in the reaction catalyzed by **8** (Figure 2).

The presence of $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$ (B) in the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ catalyzed by **1**, **3**, and **8** indicates a catalytic pathway different from that proposed for the reactions catalyzed by the magnesium complexes (Mg^nBu_2 and $\text{Mg}\{\text{CH}(\text{SiMe}_3)_2\}_2(\text{thf})_2$), in which B is not involved.⁸ The formation of a large amount of the reaction intermediate $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$ suggests that the reaction proceeds through two steps as those catalyzed by some Ti ,^{12,2e} Ru , and Rh catalysts;¹³ that is, $\text{Me}_2\text{NH}\cdot\text{BH}_3$ is converted into $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$ first, and then $\text{Me}_2\text{NH}\cdot\text{BH}_2\text{--NMe}_2\cdot\text{BH}_3$

Figure 2. $^{11}\text{B}\{^1\text{H}\}$ NMR spectroscopy monitoring of the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ catalyzed by 1 mol % of **8** in C_6D_6 at 50°C . Conditions: $[\text{sub.}]_0 = 0.68 \text{ mol/L}$, C_6D_6 as the solvent, 50°C . A, $[\text{Me}_2\text{N}-\text{BH}_2]_2$; B, $\text{Me}_2\text{NH}-\text{BH}_2-\text{NMe}_2-\text{BH}_3$.

undergoes a catalytic cyclization to give the final product, $[\text{Me}_2\text{N}-\text{BH}_2]_2$. However, due to the high reduction potential of $\text{Ln}(\text{III})$ to $\text{Ln}(\text{II})$ ($\text{Ln} = \text{Y, Lu}$), the oxidative addition and reductive elimination in the Ti-catalyzed dehydrocoupling should not occur here in the yttrium and lutetium catalyzed dehydrocoupling.

In summary, a series of rare-earth metal complexes have been investigated as catalysts for dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$. Catalytic activity of complexes is deeply dependent on the ligand and metal ion. The 1-methyl boratabenzene yttrium alkyl shows very high activity for the selective dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ into cyclic dimer $[\text{Me}_2\text{N}-\text{BH}_2]_2$. The formation of a larger amount of the reaction intermediate $\text{Me}_2\text{NH}-\text{BH}_2-\text{NMe}_2-\text{BH}_3$ suggests that the reaction proceeds through two steps. The detailed mechanism is under investigation.

ASSOCIATED CONTENT

Supporting Information

General procedure of NMR experiments and $^{11}\text{B}\{^1\text{H}\}$ NMR spectra showing the dehydrocoupling of $\text{Me}_2\text{NH}\cdot\text{BH}_3$ catalyzed by **3-7** and **9**. This material is available free of charge via the Internet at <http://pubs.acs.org>.

AUTHOR INFORMATION

Corresponding Author

*E-mail: yaofchen@mail.sioc.ac.cn.

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grants Nos. 21272256, 21132002, and 21121062), the State Key Basic Research & Development Program (Grant No. 2011CB808705), and the Chinese Academy of Sciences.

REFERENCES

- (a) Stephens, F. H.; Pons, V.; Baker, R. T. *Dalton Trans.* **2007**, 2613. (b) Hamilton, C. W.; Baker, R. T.; Staubitz, A.; Manners, I. *Chem. Soc. Rev.* **2009**, 38, 279. (c) Umegaki, T.; Yan, J. M.; Zhang, X. B.; Shioyama, H.; Kuriyama, N.; Xu, Q. *Int. J. Hydrogen Energy* **2009**, 34, 2303. (d) Smythe, N. C.; Gordon, J. C. *Eur. J. Inorg. Chem.* **2010**, 509. (e) Staubitz, A.; Robertson, A. P. M.; Manners, I. *Chem. Rev.* **2010**, 110, 4079. (f) Less, R. J.; Melen, R. L.; Wright, D. S. *RSC Adv.* **2012**, 2, 2191.
- (2) For representative works in 2012 and 2013, see: (a) Sewell, L. J.; Lloyd-Jones, G. C.; Weller, A. S. *J. Am. Chem. Soc.* **2012**, 134, 3598. (b) Baker, R. T.; Gordon, J. C.; Hamilton, C. W.; Henson, N. J.; Lin, P.-H.; Maguire, S.; Murugesu, M.; Scott, B. L.; Smythe, N. C. *J. Am. Chem. Soc.* **2012**, 134, 5598. (c) Schreiber, D. F.; O'Connor, C.; Grave, C.; Ortin, Y.; Müller-Bunz, H.; Phillips, A. D. *ACS Catal.* **2012**, 2, 2505. (d) Tang, C. Y.; Phillips, N.; Bates, J. I.; Thompson, A. L.; Gutmann, M. J.; Aldridge, S. *Chem. Commun.* **2012**, 48, 8096. (e) Helten, H.; Dutta, B.; Vance, J. R.; Sloan, M. E.; Haddow, M. F.; Sproules, S.; Collison, D.; Whittell, G. R.; Lloyd-Jones, G. C.; Manners, I. *Angew. Chem., Int. Ed.* **2013**, 52, 437.
- (3) (a) The special issue "Recent Advances in the Organometallic Chemistry of Group 3 and Lanthanoid elements. Guest Editors: Lappert, M. F., Evans, W. J. *J. Organomet. Chem.* **2002**, 647, issues 1–2. (b) The special issue "Frontiers in Lanthanide Chemistry. Guest Editor: Kagan, H. B. *Chem. Rev.* **2002**, 102, issue 6. (c) The themed issue "New Horizons in Organo-f-element Chemistry. Guest Editor: Cloke, G. *Dalton Trans.* **2010**, 39, issue 29. (d) The special issue "Organo-f-element Chemistry at Pacifichem 2010. Guest Editor: Edelmann, F. T. *J. Organomet. Chem.* **2010**, 695, issues 25–26.
- (4) Hill, M. S.; Kociok-Köhn, G.; Robinson, T. P. *Chem. Commun.* **2010**, 46, 7587.
- (5) (a) Herberich, G. E.; Ohst, H. *Adv. Organomet. Chem.* **1986**, 25, 199. (b) Fu, G. C. *Adv. Organomet. Chem.* **2001**, 47, 101. (c) Ashe, A. J., III; Al-Ahmad, S.; Fang, X. G. *J. Organomet. Chem.* **1999**, 581, 92. (d) Bazan, G. C.; Rodriguez, G.; Ashe, A. J., III; Al-Ahmad, S.; Müller, C. *J. Am. Chem. Soc.* **1996**, 118, 2291. (e) Rogers, J. S.; Bu, X. H.; Bazan, G. C. *J. Am. Chem. Soc.* **2000**, 122, 730. (f) Ashe, A. J., III; Al-Ahmad, S.; Fang, X. D.; Kampf, J. W. *Organometallics* **2001**, 20, 468. (g) Herberich, G. E.; Basu Baul, T. S.; Englert, U. *Eur. J. Inorg. Chem.* **2002**, 43. (h) Languérand, A.; Barnes, S. S.; Bélanger-Chabot, G.; Maron, L.; Berrouard, P.; Audet, P.; Fontaine, F. G. *Angew. Chem., Int. Ed.* **2009**, 48, 6695. (i) Bélanger-Chabot, G.; Rioux, P.; Maron, L.; Fontaine, F. G. *Chem. Commun.* **2010**, 46, 6816. (j) Pammer, F.; Lalancette, R. A.; Jäkle, F. *Chem.—Eur. J.* **2011**, 17, 11280. (k) Glockner, A.; Cui, P.; Chen, Y. F.; Daniliuc, C. G.; Jones, P. G.; Tamm, M. *New J. Chem.* **2012**, 36, 1392. (l) Macha, B. B.; Boudreau, J.; Maron, L.; Maris, T.; Fontaine, F. G. *Organometallics* **2012**, 31, 6428.
- (6) (a) Herberich, G. E.; Hessner, B. D.; Köffer, D. P. *J. J. Organomet. Chem.* **1989**, 362, 243. (b) Sperry, C. K.; Cotter, W. D.; Lee, R. A.; Lachicotte, R. J.; Bazan, G. C. *J. Am. Chem. Soc.* **1998**, 120, 7791.
- (7) (a) Cui, P.; Chen, Y. F.; Zeng, X. H.; Sun, J.; Li, G. Y.; Xia, W. *Organometallics* **2007**, 26, 6519. (b) Cui, P.; Chen, Y. F.; Wang, G. P.; Li, G. Y.; Xia, W. *Organometallics* **2008**, 27, 4013. (c) Cui, P.; Chen, Y. F.; Li, G. Y.; Xia, W. *Angew. Chem., Int. Ed.* **2008**, 47, 9944. (d) Yuan, Y. Y.; Chen, Y. F.; Li, G. Y.; Xia, W. *Organometallics* **2008**, 27, 6307. (e) Yuan, Y. Y.; Chen, Y. F.; Li, G. Y.; Xia, W. *Organometallics* **2010**, 29, 3722. (f) Cui, P.; Chen, Y. F.; Zhang, Q.; Li, G. Y.; Xia, W. *J. Organomet. Chem.* **2010**, 695, 2713. (Special Issue for Organo-f-Element Chemistry at Pacifichem 2010). (g) Cui, P.; Chen, Y. F.; Li, G. Y.; Xia, W. *Organometallics* **2011**, 30, 2012. (h) Yuan, Y. Y.; Wang, X. F.; Li, Y. X.; Fan, L. Y.; Xu, X.; Chen, Y. F.; Li, G. Y.; Xia, W. *Organometallics* **2011**, 30, 4330.
- (8) Liptrot, D. J.; Hill, M. S.; Mahon, M. F.; MacDougall, D. J. *Chem.—Eur. J.* **2010**, 16, 8508.
- (9) Lappert, M. F.; Pearce, R. *J. Chem. Soc., Chem. Commun.* **1973**, 126.
- (10) Evans, W. J.; Meadows, J. H.; Kostka, A. G.; Closs, G. L. *Organometallics* **1985**, 4, 324.
- (11) Xu, X.; Chen, Y. F.; Feng, J.; Zou, G.; Sun, J. *Organometallics* **2010**, 29, 549.
- (12) Sloan, M. E.; Staubitz, A.; Clark, T. J.; Russell, C. A.; Lloyd-Jones, G. C.; Manners, I. *J. Am. Chem. Soc.* **2010**, 132, 3831.
- (13) (a) Jaska, C. A.; Temple, K.; Lough, A. J.; Manners, I. *J. Am. Chem. Soc.* **2003**, 125, 9424. (b) Käβ, M.; Friedrich, A.; Drees, M;

Schneider, S. *Angew. Chem., Int. Ed.* **2009**, *48*, 905. (c) Friedrich, A.; Drees, M.; Schneider, S. *Chem.—Eur. J.* **2009**, *15*, 10339. (d) Douglas, T. M.; Chaplin, A. B.; Weller, A. S.; Yang, X.; Hall, M. B. *J. Am. Chem. Soc.* **2009**, *131*, 15440.